
19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO09

Software

User Interfaces & User Experience

TUMBCMO09

359

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

FRONT-END MONITOR AND CONTROL WEB APPLICATION FOR
LARGE TELESCOPE INFRASTRUCTURES: A COMPARATIVE ANALYSIS

Stefano di Frischia∗, INAF-OAAb, Teramo, Italy
Matteo Canzari, INAF-OAAb, Teramo, Italy
Valentina Alberti, INAF-OAT, Trieste, Italy

Athos Georgiou, CGI Scotland, Edinburgh, UK
Hélder Ribeiro, Universidade do Porto, Porto, Portugal

Abstract
A robust monitor and control front-end application is a

crucial feature for large and scalable radio telescope infras-
tructures such LOFAR and SKA, whereas the control system
is required to manage numerous attribute values at a high
update rate, and thus the operators must rely on an afford-
able user-interface platform which covers the whole range
of operations. In this paper two state-of-the-art web appli-
cations such Grafana and Taranta are taken into account,
developing a comparative analysis between the two software
suites. Such a choice is motivated mostly because of their
widespread use together with the TANGO Controls Frame-
work, and the necessity to offer a ground of comparison for
large projects dealing with the development of a monitor
and control GUI which interfaces to TANGO. We explain at
first the general architecture of both systems, and then we
create a typical use-case where an interactive dashboard is
built to monitor and control a hardware device. Then, we set
up some comparable metrics to evaluate the pros and cons
of both platforms, regarding the technical and operational
requirements, fault tolerances, developers and operators ef-
forts, and so on. In conclusion, the comparative analysis
and its results are summarized with the aim to offer the
stakeholders a basis for future choices.

INTRODUCTION
Nowadays, the complexity of the most important scien-

tific projects related to radio-astronomy require the design of
large infrastructures involving both hardware and software
side. A prominent software architecture challenge for the
correct operational behaviour of such extensive infrastruc-
ture is not only the acquisition and processing of a huge
amount of data, but also the management of an affordable
monitor and control system. This system must be capable
of inspecting a large number of variegated attributes and
values of the station, and therefore allowing an automated
or user-controlled action if a certain event occur during the
operational time of the station.
A crucial part of the monitor and control infrastructure is

played by the front-end application which usually allows the
operators to manage the whole station configuration and its
range of operations, and let them be able to act in real time
if any action is needed. Since the control system is required
to manage numerous attribute values at a high update rate,

∗ stefano.difrischia@inaf.it

the front end application is required to possess significant
ad strict requirements such affordability, consistency, secu-
rity, fault-tolerance, user-friendly interface, and many other
features which are covered in the present paper.
The two infrastructures being analysed in this paper are

among the largest radio-astronomy facilities in the world,
one fully operational and one under development: respec-
tively LOFAR [1] and SKAO. LOFAR (Low-Frequency Ar-
ray) is structured as an antenna network located mainly in
the Netherlands, and spreading across 7 other European
countries. Originally designed and built by ASTRON, it
makes observations in the 10MHz to 240MHz frequency
range with two types of antennas: Low Band Antenna (LBA)
and High Band Antenna (HBA), optimized for 10-80MHz
and 120-240MHz respectively [2]. The SKA (Square Kilo-
meter Array) Observatory is an intergovernmental and in-
ternational radio telescope project being built in Australia
(low-frequency) and South Africa (mid-frequency) [3]. It
is designed to reach a continuous frequency coverage from
50MHz to 14GHz. The frequency range from 50MHz to
14GHz requires more than one design of antenna, and so the
SKA will comprise separate sub-arrays of different types of
antenna elements that will make up the SKA-low, SKA-mid
and survey arrays.
Regarding the front-end control interface, a comparative

analysis between two different architectural and software
choice of both the aforementioned observatories is covered
in this paper. On LOFAR side, the software tool GRAFANA,
a multi-platform open source analytics and interactive visu-
alization web application, will be examined, since it is the
LOFAR adopted choice at the present day. On the other hand,
on SKAO side, the Taranta suite, a tool for creating dash-
boards and interacting with the devices within a TANGO
Control System, will be examined as the SKAO preferred
choice at the present day.

FRONT-END CONTROL APPLICATIONS
In the present section a concise explanation of the chosen

front-end frameworks from the point of view of the software
architecture is carried out. In particular, the description will
be focused on the context, the purpose, the features, the
roles and several other characteristics related to the scope
of this paper, emphasizing thus their use in radio-astronomy
facilities.
The comparative analysis has been chosen to examine

the front-end web interfaces, due to their high impact to the



19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO09

TUMBCMO09

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

360

Software

User Interfaces & User Experience

whole development of the observation facility. The use of a
certain front-end framework impacts not only at a software
developer level, but also (if not mainly) at the station operator
level, and in the end at the stakeholder level. Front-end is the
first andmain interface with which the users and stakeholders
are supposed to deal with, to inspect, to evaluate and to test
the behaviour and the result data of the observation station.
As mentioned above, the comparative analysis will be

focused on the monitor and control context of the station.
Other main aspects which may be of primary importance in
the development of the front-end framework such as obser-
vations dynamic scheduling, data correlation, reduction and
analysis, are out of the scope of this paper.
In order to carry on the comparative analysis, a series of

key features will be examined in the present study such Data
Sources, Data Collection, TANGO Controls compatibility,
visualization appeal, dashboards options, scalability, and
many others.

Grafana
Grafana® is a multi-platform web application developed

by Grafana Labs. It is designed to support analytics and
interactive visualization as well as provide charts, graphs,
and alerts when connected to supported data sources (for a
general overview, see Fig. 1).

Figure 1: Grafana System Overview [4].

Grafana is commonly used in the fields of system mon-
itoring, IoT, and network monitoring. Grafana framework
is based on the definition of an expandable plug-in system.
They can be essentially of two types:

• Built-in plugins (official release for DB services, mostly
integrating some of the most used data infrastructure).

• Custom plugins (implementation of custom units based
on the available resources or desired features).

The main features of Grafana Framework are its modu-
larity and re-usability. The end users have the possibility to
access a set of capabilities to customize dashboards layouts
(visualization panels, interactive query builders, etc.). It is
an Open Source project (Apache License v2). It consists
of two main parts: a front-end layer and a back-end layer.
The Front-end layer is written in TypeScript, JavaScript. It
includes the plugins system that is used to visualize data
and setup the data source connection and integration. The
Back-end layer is written in Go. It includes all the function
needed to run the Grafana service and plugin management
(framework layout, etc.).

One of the main reason because Grafana has been adopted
in several large infrastructure facilities is due to its capability
to monitor and analyse in real time the vast amount of data
that large-scale and distributed systems generate.

TARANTA
Taranta Suite [5] is a collection of web applications jointly

developed by MAX IV Laboratory [6] and the SKA Obser-
vatory [7] for the Tango Control System [8]. Some contri-
butions come also from the Tango community.
Its main purpose is to build a web application that allows

a user to create a graphical user interface to interact with
Tango devices. Its use is bound, therefore, to the adoption of
Tango Controls as control framework of the infrastructure.
Taranta provides tools which represent the underlying Tango
devices as a tree, and thus viewing and modifing device prop-
erties, viewing and executing device commands, creating
dashboards for interacting with Tango devices.
A Taranta application is composed of two main elements:

the backend and the frontend application. The backend
provides a GraphQL API [9] to a Tango control system.
The client is a web application that provides a generic tango
device view. Figure 2 displays how Taranta components are
linked together. It is composed of several applications, or
microservices, this way each component is developed and
tested independently.

Figure 2: Structure of Taranta [8].

The front-end of Taranta is a React [10] application that is
used both to browse, inspect and control Tango devices and
to create and run dashboards, each composed of widgets. A
widget is a dashboard component to serve the function of
interacting with Tango devices. There are different types of
widgets. A command can be sent to tango device through
command related widgets. An attribute can be read/write
through specific attribute widgets. Using widgets, users are
able to monitor attribute changes and take remote control
operations.
The existing widget can be grouped into several categories

based on the element they are supposed to deal with [11]:
labels, attributes, commands, spectrum, grouping of wid-
gets, dashboard, and many others. The number of available
widgets are increasing regularly thanks to requests from the
user community.



19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO09

Software

User Interfaces & User Experience

TUMBCMO09

361

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

Taranta implements two main views and some common
libraries.

• Devices is a view the user can use to control all the
devices in the control system using a tree-like hierarchy
(attributes, commands, and properties).

• Dashboard view provides functionality to build cus-
tomizable, intuitive, and shareable views. It affords a
collection of default widgets that the user can choose
using drag-and-drop.

The Dashboard view provides a configurable user inter-
face that enables users to create their UI starting from a blank
page and dragging and dropping widgets into it. Each wid-
get comes with its configuration, depending on the purpose
of the widget, and provides a Tango device (or attribute)
selection. In Taranta, a dashboard creation requires mini-
mal knowledge of web technologies and no programming
skills [12].

USE CASE DEFINITION
In order to perform an effective comparative analysis, a

common use case between the two front-end frameworks
must be set. Since we are dealing with monitor and control
web applications in the domain of large telescope infras-
tructures, we decided to consider the following use case
which can be representative of a real use case in the afore-
mentioned projects like LOFAR or SKA: monitor a dash-
board that shows the image of a Printed Circuit Board (PCB)
which represents a real hardware device of the observing
station. The main attributes of the device (and therefore their
corresponding values) are placed upon the image with the
possibility by the operator to read and/or modify them.
In details, the use case can be defined by the following

steps:
• create a new dashboard inside the chosen front-end
framework;

• place an image of the selected PCB as background
image of the dashboard;

• retrieve from the data source the list of the attributes
which belong to the chosen device;

• place each pair label-values upon the image, selecting
the right format, graphic, unity, etc.;

• check if the dashboard is updated correctly after the
device values updating;

• modify a read/write attribute if possible directly from
the GUI.

Grafana Dashboard
First of all, Grafana requires a data source, among a list of

supported ones, from which the device attributes will be re-
trieved. As data source for this use case Prometheus [13] DB
has been chosen. Prometheus is an open source monitoring
system and time-series database for which Grafana provides
out-of-the-box support [14]. The final aim is to display on
the dashboard the Tango device attributes which will be
retrieved as system metrics from the Tango DB server moni-
tored by Prometheus. So, the preliminary steps to configure

this data source are: download and install Prometheus and
Prometheus node_exporter (a tool that exposes system met-
rics), establish a connection between Prometheus and Tan-
goDB server, and finally configure Prometheus for Grafana
in the Data Source menu.
Then, the next step is to create a new dashboard, which

will be composed by a single panel. This panel is the envi-
ronment where a PCB image and the Tango device attributes
will be placed. In the Edit Panel window all the operations
to create, setup and modify the panel elements are present.
In the Data Source tab of this window, our connection with
Prometheus can be selected, along with the device metrics
that references the device attributes that we want to show on
the dashboard.
In order to place a PCB image as a background for the

panel, the ePict Panel must be chosen among the Visualiza-
tion panel list. Then the developer must provide an image
URL and other optional graphic options like auto-scale, size,
etc.
If the connection between Prometheus and TangoDB has

been successful, the definition of a metrics that groups all the
desired attributes should be enough simple like, for example,
the following query:

device_attribute{
host="stat_host",
device=~"station/pcb/1"

}

At this point, the positioning of label-value pairs is ready
to start, with the action of adding a Box in the ePict Panel
In the box window the developer can select the appropriate
metrics, that is shown as the attribute value, the name that
corresponds to the attribute label, and other optional acces-
sory settings, like font size, color, etc. The position of the
box, and therefore the label-value pair can be defined with
fixed numbers, or can be simpler dragged and dropped on
the desired point of the background image.
After saving the last panel updates and setting the desired

interval, if everything has been set properly, the attribute’s
values are supposed to change according to the correspon-
dent changing in the Tango DB. So, a simple monitor dash-
board for a device has been built in few steps and relatively
simple operations. A snapshot of a work-in-progress panel
can be seen in Fig. 3.
The only downside of this architectural approach is the

unavailability of modifying directly a read/write attribute
from the relative dashboard box itself. In fact, Prometheus
data source can act only as a monitor interface, while queries
that modify the state of the Tango DB are not allowed. An
implementation that overcomes this missing requirement is
possible through dedicated Tango tools, but not yet exhaus-
tively implemented neither in LOFAR nor in SKAO.

Taranta Dashboard
After the installation of Taranta suite (typically through

Makefile and Docker-Compose), there should be no need to



19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO09

TUMBCMO09

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

362

Software

User Interfaces & User Experience

Figure 3: Grafana Edit Panel window.

configure any data sources, since the Tango DB host address
is expected to be automatically detected, so the device and
attribute list of the Tango running instance are loaded at
the boot of Taranta. If everything has worked properly, the
device list should appear in the left vertical bar of theDevices
view. If the user clicks on a certain device, it is shown a
new window in the right panel where attributes, properties,
commands and logs of the selected device are listed.
Then, the aim is again to create a dashboard where a PCB

image (which represents a real hardware device) is set on
the background, and relative positions of its attributes are
placed upon the image. It is necessary therefore to switch to
the other view, the Dashboard window, in order to interact
with the dashboard and widget creation environment.
After dragged and dropped a new Box widget on the main

window, the operation to setting the background image is
simply performed through adding a custom CSS code in the
relative option among the ones in the Box configuration bar.
For example, a possible entry could be the following:

background-image: url(“<your-image-path>“);

Once that the PCB image has been added and graphically
adjusted, the attribute label-value pair can be placed. The
action can be performed with dragging and dropping one
of the available widget from the widgets bar. The Attribute
Display widget has been designed to show the label-value
pair, while, for example, the Attribute Writer or the Attribute
Writer Dropdown widget have been designed not only to
track the selected monitor point, but also to modify the value
for a read/write attribute, in order to allow a direct action on
the Tango controls framework by the end user.
After graphically adjusting the attribute monitor and con-

trol widgets, if everything has been set properly, the at-
tribute’s values are supposed to change according to the
correspondent changing in the Tango DB and/or to our di-
rect action. Note that here there is no refreshing interval,
since the dashboard updating is handled by a web socket
through an asynchronous event management. At this point, a
simple monitor and control dashboard has been built in few
steps, relatively simple operations, with possible CSS adjust-
ments. A snapshot of a work-in-progress Taranta dashboard
can be seen in Fig. 4.
One of the downsides of this architectural approach is that

everything in Taranta is tailored on a monitor and control

Figure 4: Taranta Dashboards view window.

system which runs Tango Controls Framework. This makes
the front end application less extendable if different data
sources are needed in a single dashboard.

COMPARATIVE ANALYSIS
In the present section, a summary comparative analysis

between the two front end frameworks is exposed, enlight-
ening the pros and cons of both choices with the aim to offer
the stakeholder a basis for future decisions.
For the sake of clarity we must emphasize that we are

comparing two open-source applications which rely on a dif-
ferent scale community of developers. Grafana encompasses
a community of about 2100 developers, while Taranta counts
about 40 developers. This implies of course an imbalance
of the available features and peculiarities, but nevertheless,
they are contending nowadays the primacy as preferred front
end frameworks on large telescope facilities.
From the point of view of the platforms and operative sys-

tems (OS) supported, Taranta lacks of a Windows installer,
while Grafana supports its installation on all the common
used OS. On the other hand, for our aforementioned use case,
Taranta did not need any accessory applications outside the
ones deployed after its installation, while Grafana needed a
Prometheus DB and a Prometheus Node Exporter to work
properly with Tango.
About the support and compatibility with the Tango Con-

trols Framework, it is indubitable that both applications
suit perfectly as a front end with Tango as middleware, but
Taranta has proven to possess much features that enable the
use of Tango commands and Tango read/write attributes,
allowing the end user to directly act on Tango devices from
the view. On the other hand, Grafana supports a multitude
of data sources that make it a preferrable choice in case of
multi-source monitor and control system.
Regarding the GUI and UX/UI aspects, the visual ap-

peal of Grafana overcomes the essential interface of Taranta,
but both of them result in a simple and straightforward ex-
perience from the point of view of the end user, which is
required to possess basic software skills. From the devel-
oper perspective instead, Grafana could require to adjust the
dashboard configuration with data sources queries in SQL
or in Prometheus Query Language, while Taranta requires a
minimum knowledge of CSS to tweak the dashboard options.



19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO09

Software

User Interfaces & User Experience

TUMBCMO09

363

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

Both of them support a system of Alerting, and provide
Authentication/Authorization tools, while the scalability in a
large scale can be achieved by several tools that have already
been successfully tested: for example there is a dedicated
Grafana Cloud platform, suitable for different requirements,
while Taranta encourages the use of Minikube and Docker
as preferred deployment tools. The results of comparative
analysis are summarized in Fig. 5.

Figure 5: Comparative analysis table.

As a final result, it can be assert that both applications
meet the needs of a complex monitor and control front end
framework, suitable for large infrastructures, and in partic-
ular for those who rely on the Tango Controls framework
as control system architecture. Grafana is perfectly suitable
for any kind of systems and organization, especially if a
on-the-fly setup is needed or if the system relies on several
different data sources. On the other hand, Taranta, even if it
is a younger competitor and can rely on a small community
of developer, makes its integration and compatibility with
Tango its strength point, allowing direct control features not
present in Grafana.

CONCLUSION
In the present paper, a comparative analysis of two pop-

ular front-end applications for monitor and control large
telescope infrastructures such LOFAR or SKAO has been
carried on, elaborating a real use case. Both systems have
proven to be suitable for this task, each one of them with its
peculiarities and features. Grafana has proven to be perfectly
suitable for any kind of systems and organization, while
Taranta, even if it is a younger competitor, makes its integra-
tion and compatibility with Tango Controls framework its
primary strength point.

ACKNOWLEDGEMENTS
Many thanks to the INAF staff, the ASTRON staff, the

SKAO developers community and the TANGO community
for their support, great work and ideas.

REFERENCES
[1] LOFAR, https://www.astron.nl/telescopes/lofar

[2] M. P. van Haarlem et al., “LOFAR: The LOw-Frequency
ARray”, Astron. Astrophys., vol. 556, p. A2, 2013.
doi:10.1051/0004-6361/201220873

[3] P. Dewdney et al., “The Square Kilometre Array”, in Proc.
IEEE, vol. 97, no. 8, 2009, pp. 1482–1496.
doi:10.1109/JPROC.2009.2021005

[4] Grafana, https://grafana.com/

[5] Taranta Suite, https://gitlab.com/tango-controls/
web/taranta-suite

[6] Max-IV Institute, https://www.maxiv.lu.se

[7] Square Kilometre Array (SKA), https://www.skao.int/

[8] M. Eguiraun et al., “Taranta, the No-Code Web Dashboard in
Production”, in Proc. ICALEPCS’21, Shanghai, China, Oct.
2021, pp. 1017–1022.
doi:10.18429/JACoW-ICALEPCS2021-FRAR01

[9] GraphQL,Aquery language for your API, https:
//graphql.org/

[10] React, A JavaScript library for building user interfaces,
https://reactjs.org/

[11] M. Canzari et al., “How Taranta provides tools to build user
interfaces for TANGO devices in the SKA integration envi-
ronment without writing a line of code”, in Software Cyber-
infrastructure Astron. VII, vol. 12189, 2022.
doi:10.1117/12.2630141

[12] M. Canzari et al., “Satisfying wishes for SKA engineers: how
Taranta suite meets users’ needs”, in Software Cyberinfras-
tructure for Astron. VI., vol. 11452, 2020.
doi:10.1117/12.2562585

[13] Prometheus, monitoring system and time-series database,
https://prometheus.io/

[14] Get started with Grafana and Prometheus, https:
//grafana.com/docs/grafana/latest/getting-
started/get-started-grafana-prometheus/


